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Deeply exclusive processes and generalized parton distributions
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Abstract. We discuss how generalized parton distributions (GPDs) enter into hard exclusive processes,
and focuss on the links between GPDs and elastic nucleon form factors. These links, in the form of sum
rules, represent powerful constraints on parametrizations of GPDs. A Regge parametrization for the GPDs
at small momentum transfer −t is extended to the large-t region and it is found to catch the basic features
of proton and neutron electromagnetic form factor data. This parametrization allows to estimate the quark
contribution to the nucleon spin. It is furthermore discussed how these GPDs at large-t enter into two-
photon exchange processes and resolve the discrepancy between Rosenbluth and polarization experiments
of elastic electron nucleon scattering.

PACS. 12.38.Bx Perturbative calculations – 13.60.Fz Elastic and Compton scattering

1 Introduction

Generalized parton distributions (GPDs) are universal
non-perturbative objects entering the description of hard
exclusive electroproduction processes (see [1,2,3,4] for re-
views and references). These GPDs depend upon the dif-
ferent longitudinal momentum fractions of the initial (fi-
nal) quark and upon the overall momentum transfer t to
the nucleon.

As the momentum fractions of initial and final quarks
are different, one accesses quark momentum correlations
in the nucleon. Furthermore, if one of the quark momen-
tum fractions is negative, it represents an antiquark and
consequently one may investigate qq̄ configurations in the
nucleon. Therefore, these functions contain a wealth of
new nucleon structure information, generalizing the infor-
mation obtained in inclusive deep inelastic scattering.

In particular, the t-dependence of the GPDs has at-
tracted a considerable interest recently. It has been shown
that by a Fourier transform of the t-dependence of GPDs,
it is conceivable to access the distributions of parton in the
transverse plane, see [5], and to provide a 3-dimensional
picture of the nucleon [6]. The t-dependence of moments
of GPDs have also become amenable to lattice QCD cal-
culations [7] recently.

2 Regge parametrization of GPDs
and link to the elastic form factors

The t-dependence of the GPDs is directly related to nu-
cleon elastic form factors (FFs) through sum rules. In par-
ticular, the nucleon Dirac and Pauli form factors F1(t) and

F2(t) can be calculated from the GPDs H and E through
the following sum rules for each quark flavor (q = u, d)

F q
1 (t) =

∫ +1

−1
dx Hq(x, ξ, t) , (1)

F q
2 (t) =

∫ +1

−1
dx Eq(x, ξ, t) . (2)

One can choose ξ = 0 in the previous equations, and model
H(x, 0, t) and E(x, 0, t). In modeling the t-dependence of
GPDs, the Regge picture suggests a behavior for the GPDs
at small x as [3] :

Hq(x, ξ = 0, t) = qv(x)x−(α(t)−α(0)), (3)

with qv the forward valence quark distributions. Assuming
a linear Regge trajectory with the slope α

′
, one gets

Hq
Regge(x, 0, t) = qv(x)x−α

′
1 t, (4)

The notation α
′
1 emphasizes that this is the slope of the

leading Regge trajectory for the F1 form factor.
The Dirac mean squared radii of proton and neutron

in this model are given by

r2
1,p = −6 α

′
1

∫ 1

0
dx

{
eu uv(x) + ed dv(x)

}
lnx , (5)

r2
1,n = −6 α

′
1

∫ 1

0
dx

{
eu dv(x) + ed uv(x)

}
lnx , (6)

with eu = +2/3 and ed = −1/3, which yield for the elec-
tric mean squared radii of proton and neutron :

r2
E,p = r2

1,p +
3
2

κp

m2
N

, r2
E,n = r2

1,n +
3
2

κn

m2
N

, (7)
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where κp (κn) are the proton (neutron) anomalous mag-
netic moments. For the proton, the rms radius r2

E,p re-
quires the value α

′
1 = 1.0 − 1.1 GeV−2. Such a value is

close to the expectation from Regge slopes for meson tra-
jectories, therefore supporting the ansatz of (4).

To calculate F2, one needs a parametrization for the
nonforward parton densities Eq(x, 0, t). The Regge picture
suggests a similar type structure

Eq
Regge(x, t) = eq(x) x−α

′
2 t, (8)

as for Hq(x, 0, t), with possibly a slightly different slope
α

′
2. The next step is to model the forward magnetic densi-

ties eq(x). The simplest idea, is to take them proportional
to the qv(x) densities as :

eu(x) =
κu

2
uv(x) and ed(x) = κddv(x) , (9)

satisfying the normalization conditions

κq ≡
∫ 1

0
dx eq(x), (10)

which, in their turn, guarantee that F p
2 (0) = κp, and Fn

2 (0)
= κn, using κu = 2κp + κn and κd = κp + 2κn.

The above model fits the proton elastic form factor
data for small −t < 0.5 GeV2 but falls considerably short
of the data for −t > 1 GeV2.

To improve the agreement with the precise data for nu-
cleon form factors at large −t which have been obtained
in recent years, both a Gaussian-type model, as first dis-
cussed in [8], and the Regge-type model discussed above
have to be modified. The shortcomings of the gaussian
and Regge models are that they do not satisfy the Drell-
Yan-West (DYW) relation [9,10] between x → 1 behavior
of the structure functions and the t-dependence of elastic
form factors. According to DYW, if the parton density
behaves like (1−x)ν , then the relevant form factor should
decrease as 1/t(ν+1)/2 for large t. The simplest idea to sat-
isfy DYW and to preserve the Regge structure at small x
and t is through the modified Regge ansatz [11]

Hq
mod.Regge(x, 0, t) = qv(x)x−α

′
1 (1−x)t . (11)

In the following estimates, the unpolarized parton dis-
tributions from the MRST2002 global NNLO fit [12] are
used. This leads to a x → 1 behavior as qv(x) ∼ (1−x)νq ,
with νu = 3.50 and νd = 4.03 at a scale µ2 = 1 GeV2.

In case of the Pauli form factor F2, the same modifi-
cation of the Regge ansatz yields

Eq
mod.Regge(x, 0, t) = eq(x)x−α

′
2 (1−x)t . (12)

Experimentally, the proton helicity flip form factor
F2(t) has a faster power fall-off at large t than F1(t).
Within the modified model, this means that the x ∼ 1
behavior of the functions E(x, 0, t) and H(x, 0, t) should
be different. To produce a faster decrease with t, the x → 1
limit of the density Eq(x, 0, t) should have extra powers
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Fig. 1. Proton magnetic (upper panel) and electric (middle
panel) form factors compared to the dipole form GD(t) =
1/(1− t/0.71)2, as well as the ratio of both form factors (lower
panel). The solid curves correspond to the modified Regge
parametrization with α

′
1 = 1.098 GeV−2, α

′
2 = 1.158 GeV−2,

ηu = 1.52 and ηd = 0.31. For comparison also the result for a
Gaussian model as in [8] is shown (dashed curves). The refer-
ences to the data can be found in [11]

of 1 − x compared to that of Hq(x, 0, t). Without intro-
ducing too many free parameters, this can be achieved by
multiplying the valence quark distributions in the ansatz
for eq(x) by an additional factor (1 − x)ηq , i.e.,

eu(x) =
κu

Nu
(1 − x)ηuuv(x) , (13)

ed(x) =
κd

Nd
(1 − x)ηddv(x) , (14)

where the normalization factors Nu and Nd guarantee the
conditions (10). The powers ηu and ηd are to be deter-
mined from a fit to the proton form factor data. Note that
the value ηq = 2 corresponds to 1/t asymptotic behavior
of the ratio F q

2 (t)/F q
1 (t) at large t.

In Figs. 1 and 2, the proton and neutron Sachs electric
and magnetic form factors are shown, which are obtained
from F1, F2 as GE = F1 − τ F2, GM = F1 + F2 with
τ ≡ −t/4M2

N . One observes that the modified Regge
model gives a very good description of all available form
factor data for both proton and neutron.

Since the GPD E enters the sum rule for the total
angular momentum Jq carried by a quark of flavor q in
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Fig. 2. Neutron magnetic form factor compared to the dipole
form (upper panel), and neutron electric form factor (lower
panel), with curve conventions as in Fig. 1. The references to
the data can be found in [11]

the proton as [13] :

2Jq =
∫ 1

−1
dx x {Hq(x, 0, 0) + Eq(x, 0, 0)} , (15)

our parametrization in which the x → 1 limit of E is
determined from the F p

2 /F p
1 form factor ratio, allows to

evaluate the above sum rule. The first term in the sum
rule of (15) is already known from the forward parton dis-
tributions and is equal to the total fraction of the proton
momentum carried by a quark of flavor q (q = u, d, s) :

Mq
2 ≡

∫ 1

−1
dx xHq(x, 0, 0) =

∫ 1

0
dx x [qv(x) + 2 q̄(x)] ,(16)

with q̄(x) the anti-quark distribution. The ’non-trivial’
contribution to the sum rule arises from the second mo-
ment of the GPD E. In Table 1, the values of the quark
momentum sum rule Mq

2 at the scale µ2 = 1 GeV2 are
shown, as well as the modified Regge estimate for Ju, Jd,
and Js. This estimate leads to a large fraction (63 %) of
the total angular momentum of the proton carried by the
u-quarks and a relatively small contribution carried by
the d-quarks. As the d-quark intrinsic spin contribution is
known to be relatively large and negative ( ∆dv � −0.25
), the small total angular momentum contribution Jd

of the d-quarks which follows from our parametrization
implies an interesting cancellation between the intrinsic
spin contribution and the orbital contribution Ld ( with
2Jq = ∆q + 2Lq ), which should therefore be of size
2Ld � 0.2. For the u-quark on the other hand, the es-
timate for 2Ju is quite close to the intrinsic spin contri-
bution ∆uv � 0.6. Such a picture is also supported by

Table 1. Estimate of 2 Jq (second column) for the different
quark flavors at the scale µ2 = 1 GeV2 according to (15),
using the modified Regge parametrization for the GPD E.
For the forward parton distributions, the MRST2002 NNLO
parametrization [12] for Mq

2 (first column) is used. For com-
parison, the third column shows the quenched lattice QCD
results of [14], extrapolated to the physical pion mass

Mq
2 2 Jq (mod. Regge) 2 Jq (lattice [14])

u 0.40 0.63 0.734 ± 0.135
d 0.22 -0.06 -0.085 ± 0.088
s 0.03 0.03

u + d + s 0.65 0.60 0.65 ± 0.16

a recent quenched lattice QCD calculation [14]. One in-
deed sees from Table 1 that the quenched lattice QCD
calculation yields quite similar values for 2Ju and 2Jd

as the modified Regge parametrization. It remains to be
seen however how large is the sea quark contribution to
the GPD E which can enter the spin sum rule of (15).
This sea quark contribution is absent in the quenched lat-
tice QCD calculations of [14]. It is also not constrained by
the form factor sum rules, which only constrain the va-
lence quark distributions. Ongoing measurements of hard
exclusive processes provide a means to address this con-
tribution.

3 Two-photon exchange in elastic
electron–nucleon scattering at large −t

The nucleon electromagnetic form factors as discussed
above have been usually extracted using elastic electron-
nucleon scattering in the one-photon exchange approxima-
tion. One surprising experimental result from polarization
experiments of elastic electron-nucleon scattering has been
the ratio of electric to magnetic proton form factors, which
is clearly at variance with unpolarized measurements us-
ing the Rosenbluth separation technique.

The understanding of this puzzle has generated a lot
of activity very recently. It has been suggested in vari-
ous calculations and analyses that contributions from two-
photon exchange amplitudes at the level of a few percent
can help resolve this puzzle. The general structure of two-
(and multi)-photon exchange contributions to the elastic
electron proton scattering observables has recently been
studied [15]. It was found in that work that the 2γ ex-
change contribution to the unpolarized cross section can
be kinematically enhanced at larger Q2 compared with
the (GEp)2 term, while the 2γ exchange contribution to
the polarization measurements need not affect the results
in a significant way. Explicit model calculation of the 2γ
exchange effects were performed recently in [16,17].

In [17], the elastic ep scattering has been evaluated
at large momentum transfer through the scattering off
partons in a nucleon. In particular, the two-photon ex-
change amplitude has been related to the GPDs at large
−t, as discussed above. This partonic calculation involves
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Fig. 3. Handbag diagram for the elastic ep scattering at large
momentum transfers. H is the hard scattering process, whereas
lower blob represents the GPDs of the nucleon
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Fig. 4. Direct and crossed box diagrams for H in Fig. 3

the evaluation of the handbag diagram of Fig. 3. The
hard scattering kernel entering in this diagram is shown in
Fig. 4, corresponding with the box diagram at the quark
level. As a result of the evaluation of the handbag diagram
of Fig. 3, the two-photon exchange amplitude for elastic
electron-nucleon scattering at large -t can be expressed in
terms of 3 integrals containing large -t GPDs (see [17] for
details).

In Fig. 5, we display the effect of 2γ exchange on the
cross sections. Fig. 5 illustrates that the values of GEp as
extracted from the polarization data are inconsistent with
the slopes one extracts from a linear fit to the Rosenbluth
data in the Q2 range where data from both methods ex-
ist. By adding the 2γ correction, one firstly observes that
the Rosenbluth plot becomes slightly non-linear, in par-
ticular at the largest ε values. Furthermore, one sees that
over most of the ε range, the slope is indeed steeper in
agreement with the Rosenbluth data. One sees that in-
cluding the 2γ exchange allows to reconcile both polariza-
tion transfer and Rosenbluth data.
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